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1. INTRODUCTION 

1.1       CONSTITUTIVE BEHAVIOR 

In the elastohydrodynamic (EHD) regime of lubrication, the rheology of the liquid 

lubricant is key to the generation of a protective film and the transfer of shear across 

concentrated contacts in many machine elements. It is now understood that small scale 

EHD plays a major role in the boundary lubrication of rough surfaces. Many high- 

pressure metal working operations share the pressure and kinematics of 

elastohydrodynamics. A complete solution of the EHD problem, however, requires a 

thorough knowledge of the lubricant constitutive behavior and the attending properties as 

functions of temperature and pressure. The Newtonian assumption alone is often 

inadequate, and the assumptions upon which the Reynolds equation is based must be re- 

examined. 

Early investigations of high-pressure lubricant rheology addressed the small strain 

response. For small strains, viscous heating which plagues large strain measurements 

may be ignored. These measurements were both optical and acoustical, e.g. references 

[1] and [2] respectively, and provided linear viscoelastic properties. These techniques are 

experimentally convenient in requiring only optical or electrical paths through the high- 

pressure chamber. The linear viscoelastic response is, however, unable to account for any 

but the small slip traction in EHD. 

Attention then turned to large strain investigations which could reveal non-linear 

behavior and successfully predict EHD traction [3]. The progress in this area has recently 

been significant in that a mechanism of apparent non-linearity (at least for low molecular 

weight liquids) has been shown to be a mechanically induced shear localization or shear 



bands [4]. The constitutive behavior in the material surrounding the shear bands is 

apparently linear viscoelastic. 

Fundamental to the generation of a film in concentrated contacts is the 

piezoviscous property of liquid lubricants - whereby even simple low molecular weight 

liquids at ambient temperature attain very great viscosities under pressure. Shear 

Theological investigations of non-Newtonian response of lubricants [5,6] have resorted to 

low temperatures to achieve the same level of viscosity. It is clear now, that high- 

pressure is essential to an accurate simulation. Liquids become considerably "stronger" 

under pressure. Peculiar to these atmospheric pressure studies was the observation of 

fracture. Eastwood and Harrison [5] observed the liquid in shear and reported cracking. 

Early investigations of non-Newtonian lubricant response often studied polymer 

solutions. The blend of mineral base oil and polymeric viscosity index improver is 

representative of multi-grade motor oils. The capillary rheometer was useful for this 

purpose as it is very simply pressurized and although the shear stress cannot be large for 

this instrument, non-Newtonian flow occurs at relatively low stress for polymer solutions. 

The high-pressure capillary viscometer was developed to a high level by Jakobsen and 

Winer [7] who reported measurements to shear rates of lO^s'l, pressures to 600 MPa and 

time of shear as short as 4 jas. They reported Newtonian flow for liquid lubricant base 

stocks to a shear stress of 5 MPa. 

1.2      REYNOLDS EQUATION 

The analysis of the pressure generated by lubricant films is almost exclusively 

performed with a form of the classical Reynolds equation.   This differential equation 



derives from the inertialess form of the Navier-Stokes equation combined with the 

continuity equation with the assumption that the flow channel is small in one coordinate 

direction. It has been generalized to incorporate variable viscosity as well as variable 

density and has been remarkably accurate in predicting the film thickness in non- 

conformal contact problems. However, there is a fundamental limitation to the Reynolds 

equation for problems in which viscosity varies with pressure and in particular, in the 

elastohydrodynamic regime. The cross-film pressure gradient cannot be neglected and 

secondary flows result. 

Renardy [8] recognized that the Navier-Stokes equations for an incompressible, 

piezoviscous fluid may suffer from non-existence and nonuniqueness problems when the 

principal tensorial strain rates are not less than (2ua)"'. Here, u is viscosity and 

a = d lnu /dp is the local pressure viscosity coefficient. The Navier-Stokes equations can 

undergo a change of type:—a process which has been used to characterize shear 

localization [9]. 

2. NON-LINEAR SHEAR RESPONSE 

The search for the relevant constitutive equations which relate the lubricant stress 

to the flow kinematics in a concentrated contact has occupied the interest of tribologists 

working in EHD for at least thirty years. The goal has been to construct experiments to 

verify the rheological models and to provide the necessary property relations so that the 

complete elastohydrodynamic solution may be obtained. Various non-Newtonian models 

(see [3] for a review) have been advanced which provide accurate solutions for the 

traction over some operating range when the required rheological properties are obtained 



from the same traction data. In 1972, Dyson [10] warned that EHD traction research was 

"enclosed within a tight circle" of fitting parameters to observations without 

consideration for measurements made outside of EHD. Hopefully, we have broken from 

the circle. 

We may now generate rheological flow curves under conditions of pressure, 

temperature, and rate of shear which, although still rather restricted, are sufficiently 

within the realm of EHD to make accurate traction predictions and compare with traction 

experiments. We have previously interpreted these flow curves as lubricant constitutive 

behavior. However, in light of the recent observation [4] of mechanical shear bands 

operating within the lubricant film concurrent with non-linear shear response, this 

interpretation must be accompanied by a caveat: Rheological flow curves which are 

generated in plane shear yield an empirical rate equation which is useful in modeling 

Couette dominated lubrication problems. A rigorous analysis of the EHD problem would 

require a constitutive equation and a slip criterion such as Mohr-Coulomb [11]. 

2.1        VISCOUS HEATING IN COUETTE VISCOMETRY 

Presently, the most useful rheometer configuration for investigation of high- 

pressure, high-stress response of the liquid state is that of rotating concentric cylinders. 

When a liquid is sheared, the viscous work done raises the temperature of the liquid. 

While the study of this phenomenon is of itself interesting to lubrication, it is to be 

avoided in a rheological measurement because constitutive behavior excludes processes 

which result from temperature variation. In previous work [12] concerning Couette 

devices the authors have emphasized the importance of a low Brinkman No. (through 



primarily a small shearing gap) to mitigate the effect of the temperature difference within 

the liquid film and fast instrument response to control the temperature of the surfaces of 

the solid boundaries to the film. An alternate experimental approach is to perform a 

measurement in so short a time that the temperature profile in the film has not had time to 

develop but at a late enough time that the velocity profile is fully formed. Winter [13] 

showed that this latter approach requires that the Prandtl No. be large. 

An earlier analysis of the combined effect of instrument response time and 

cylinder heating [12] modeled the cylinders as a lumped heat capacity. It was found that 

to minimize errors due to this combination the measured stress history should show no 

thermal softening over a period of time equal to the instrument response time. Later, the 

evolution of the radial temperature profile within the cylinders was considered [14]. A 

detailed example of a numerical thermal simulation of one of the high-pressure Couette 

viscometers used in this laboratory follows. 

Only conduction in the radial direction is considered. An appropriate form of the 

energy equation for the metal cylinders is 

£r +1 £L = £■£* £L (1) 
dr      r ör        km     dt 

where r is the radial coordinate, t is time and p, C, and k are the density, specific heat 

capacity and thermal conductivity, respectively. The subscript, m, refers to the metal 

from which the cylinders are fabricated. Within a pressure vessel the outer surface of the 

outer cylinder (or cup) is in contact with low conductivity liquid. Therefore at the 

outermost surface the boundary condition is set at öT/ör = 0, namely it is an adiabatic 



surface. Symmetry at that axis of rotation dictates a similar boundary condition, oT/dv = 

0 at r = 0. 

The shearing gap is very thin compared with the working radius so that curvature 

of the liquid film can be ignored. A preliminary numerical solution for the liquid film 

with isothermal boundaries and dissipation showed that for a 1 \xm film, steady state 

temperature distribution was achieved after 10 |xs of shearing. Therefore, the storage 

term in the energy equation for the liquid film is dropped. Including the dissipation term, 

TV . we have for the liquid 

k|.T + Ty = 0 (2) 
or' 

The geometry considered is shown in Figure 1. The liquid being sheared is in the 

circular gap between the outer and inner cylinders. Only the outer cylinder rotates with a 

velocity which yields a specified average of the rate of shear, y. The temperature and the 

radial heat flux are made continuous at the two metal/liquid interfaces. Equations (1) and 

(2) in their respective regions are solved numerically with the above boundary conditions 

and with initial uniform temperature (arbitrarily set to zero for Figure 1) to obtain 

temperature distribution and shear stress versus time. 

The result of a sample computation is shown in Figure 1 for two velocity 

histories.   The velocity of the outer cylinder was increased linearly with time until an 

apparent or average rate of shear of KrV* was reached at to equal to 10 and 50 ms. The 

liquid rheology was Newtonian with n = 10^ Pas and ß = 0.1°C~1. The gap was 1.0 jam. 

The liquid and metal thermal conductivities were k = 0.15 and km = 225 W/m°C and for 

the metal pm Cm = 3 x 10^ J/m^C. The temperature profiles within the metal cylinders 



are shown in Figure 1 for t = t0. The liquid film temperature reached a maximum very 

near the surface of the inner cylinder. The reduction in shear stress from isothermal was 

less than 2% for t0 = 10 ms and less than 4% for t0 = 50 ms. The rotational velocity in 

this example is only about 1 revolution per second and can easily be achieved in 10 ms by 

a stepper motor. When a very large driving torque is required a 50 ms linear velocity 

ramp may be necessary. 

In early high-pressure Couette devices the critical response time was often that of 

the torque transducer which provides the stress measurement. This transducer is 

immersed in a high-pressure liquid and for high viscosity the transducer responds as a 

first order instrument with a time constant, tc, which is proportional to liquid viscosity. 

Very fast measurements may be obtained by accelerating both cylinders and then 

arresting the rotation of one cylinder with the torque transducer which can be immersed 

in a low viscosity liquid. Now, the velocity response is intimately connected with the 

transducer response. The undamped natural frequency for the transducer is 2.5 kHz. 

Theoretically, a 5 percent settling time [15] of 0.2 ms can be achieved for transducer 

response by optimizing the damping liquid viscosity. This is difficult to achieve in 

practice as the viscosity of the damping liquid changes with the test temperature and 

pressure. In any event, we have not observed an improvement in measurements typical of 

those reported here when done faster than 50 ms. The temperature increases shown in 

Figure 1 present no problem in interpretation of results. 

Also, by not considering axial  conduction in the cylinders the  analysis 

overestimates the metal temperature rise.   Comparing measured stress histories for a 



Newtonian liquid with the computed stress history at t = Is we found the actual loss of 

shear stress compared to isothermal shear was only 64% of the predicted loss. 

The temperature distribution of Figure 1 was incorporated into a thermal-elastic 

numerical analysis of each cylinder using both plane-strain and plane-stress idealizations. 

Thermal expansion results in no subtantial change in the operating film thickness at the 

time of the measurement. 

2.2   SOME RESULTS FOR PRESSURES TO 300 MPA 

A high-pressure, high shear stress Couette viscometer was developed [14] in this 

laboratory to operate at pressures to 300 MPa. The steady shear response of various 

liquid lubricants [14] and a grease [16] have been investigated. For the grease, an 

empirical stress equation was found of the form 

Tq = T?+(g^)q ,T>T5 (3) 

where g is a dimensionless viscosity enhancement factor approximately equal to 2, q is a 

dimensionless exponent and u is the base oil viscosity. For q = 0.5, equation (3) becomes 

Casson's equation for oil/particulate mixtures. 

Flow curves are presented for a high-traction fluid, Santotrac 50 and a mineral oil, 

LVI 260 in Figures 2 and 3, respectively. Although the pressures and temperatures are 

comparable the shear response is quite different. The cycloaliphatic traction fluid 

remains Newtonian to a shear stress of at least 10 MPa whereas the mineral oil responds 

non-linearly above 3 MPa. Note also that for the mineral oil, the stress becomes 

essentially independent of rate at about x = 10 MPa and that the temperature dependence 

diminishes as the rate dependence diminishes. Because of their extended Newtonian 
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response we have begun to use the cycloaliphatic traction fluids as viscosity standards for 

shear stress greater than 1 MPa in calibrating cylinder gaps. 

2.3 A NEW HIGH-STRESS COUETTE VISCOMETER FOR 600 MPA PRESSURE 

An increase in the pressure capability of previous rotating concentric cylinder 

viscometers is necessary to investigate the shear response of typical lubricants well above 

the glass transition temperature. Translating concentric cylinder rheometers are capable 

of pressures above 1 GPa; however the rate of shear is so low that the viscosity must be 

made very large in order to achieve an interesting magnitude of shear stress. Hence 

experiments are often conducted near the glass transition of the lubricant. 

We recently reported [14] the development of a Couette viscometer for pressure to 300 

MPa and the results of the previous section were obtained with that device. The pressure 

capability of the Couette technique is doubled with the device shown in section view in 

Figure 4. The outer cylinder (cup) is driven by an external stepper motor by means of a 

drive shaft. The thrust bearing which prevents expulsion of the shaft from the vessel has 

been moved to outside of the vessel so that the bearing does not run in pressurized liquid. 

The high-pressure seal is now a simple spring-loaded packing. There is no need for high- 

pressure electrical feed-throughs since the torque measurement is transmitted out of the 

vessel optically. The inner cylinder (bob) is restrained from rotation by a torsion bar with 

a mirrored surface within a glass tube. See Figure 4. 

The principle of the torque measurement is depicted in Figure 5. The twist of the 

torsion bar results in a deflection of a laser beam which is detected by an optical position 

sensor.  A glass tube (Figure 4) provides a circular interface between the liquid which 



surrounds the mirror and the pressurizing fluid so that changes in refractive index of the 

sample has no effect on the measurement. 

2.4  RESULTS FOR PRESSURES TO 600 MPA 

A flow chart is presented for the polyalphaolefin, SHF1001, in Figure 6. The 

response is apparently Newtonian to about 2 MPa shear stress, although the effective 

viscosity below 2 MPa is slightly reduced compared to falling body measurements. 

The mineral oil, HVI 650, has been the subject of numerous traction experiments. 

The shear response of HVI 650 is depicted in Figures 7 a and b. The curves drawn 

through the data points for 23°C and 44°C represent the empirical Carreau-Yasuda 

equation 

T = HY 1 + 

(m-l).'a 

(4) 

Here, a is a dimensionless parameter which controls the breadth of the transition from 

Newtonian to a non-Newtonian flow regime with rate sensitivity coefficient of m. For m 

= 0, iL is a limiting shear stress. In Figures 7 a and b, we used a = 1.5 at 23°C and a = 2 

at 44°C. For the limiting stress, the form proposed by Bezot, et al. [17] was adopted 

TL = c0 + c,p + c2p
2 (5) 

Using the results of Figure 7b and Ref [18] and [19], we obtained c\ = 0.034 and C2 = 2.1 

x 10"5 MPa with c0 arbitrarily set to zero. Note that for HVI 650 at 44°C (Figure 7a) the 

curves are also a good approximation of the Sinh Law, 

T = T0 sirih'x([iy/i0) (6) 

10 



where T0 is a stress which represents the limit of Newtonian response and is 3.3, 5.2 and 

6.5 MPa for pressures of 448, 517 and 586 MPa respectively. That is, T0 * tL IA at 44°C. 

The shear response of the traction fluid, Santotrac 40, is shown in Figure 8. For 

the pressure of 414 MPa, the solid curve is equation (4) and the two broken curves are 

equation (6) for x0 of 6 and 25 MPa respectively. When elastohydrodynamic traction 

curves are interpreted in terms of equation (6) together with exponential pressure- 

viscosity the traction gradient can be set equal to x0 [18] 

— = t0 (7) 

Values of T0 obtained from traction tests using (7) are typically less than 6 MPa 

[18, 20] for cycloaliphatic traction fluids under conditions of Figure 8. Clearly, from 

Figure 8. the Newtonian limit exceeds 6 MPa and is close to 25 MPa. Therefore, any 

interpretation of the traction gradient as a Newtonian limit through a Sinn Law model 

with T„ independent of pressure must be suspect. However, if the pressure of a 

rheologica] measurement is chosen carefully it should be possible to obtain agreement 

between the Newtonian limit for that particular pressure and the traction gradient since 

the Newtonian limit is pressure dependent (eg., HVI650 at 448 MPa and 44°C). 

We have investigated the grease from Ref [16] and its base oil in the current 

rheometer to explore departures from Newtonian behavior at high shear stress. In Figure 

9, for room temperature, the mineral base oil, 600P, is non-Newtonian above x = 2 MPa 

at 310 MPa pressure. When the pressure is increased to 517 MPa this oil is Newtonian to 

T = 3 MPa. The CA7000, which is a soap-thickened grease of 600P, is also shown in 

Figure 9. It would appear from these limited data that the shear stress for the grease (at 

11 



high stress) may be obtained by multiplying the base oil result by the previously [16] 

obtained viscosity enhancement factor, g, which is about 2. Clearly, equation (3) is not 

applicable here since it becomes approximately Newtonian at high shear stress. Other 

techniques have been developed to probe the response of liquids to high pressure and 

stress. 

Other laboratories have observed rate independence at elevated pressure. For 

example, the High-Pressure Impact Viscometer of Wong, et. al. [21] entraps a quantity of 

liquid between a ball and a plate. Interferometry is used to determine the local flow rate 

of liquid leaking from the entrapment and local surface distortion which yield local 

pressure from elasticity theory. A Rabinowitsch Correction for slit flow gives the true 

shear rate at the surface. The authors concluded that the effective viscosity was found in 

earlier works to be a function of time because the shear rate varied with time while the 

shear stress remained at the limiting value. Limiting stress type behavior was observed 

over 4 decades of shear rate with m * 0.01 for LVI 260. 

3. EHD TRACTION CALCULATION 

We should expect our property measurements to yield reasonable predictions of 

concentrated contact traction. Evans [22] generated isothermal, line-contact traction 

curves for three of the most widely investigated liquid lubricants: 5P4E, Santotrac 50 and 

HVI650. These data were described as isothermal since the disc temperature was 

adjusted to provide a constant estimated average film temperature. These traction data 

are presented for HVI650 in Figure 10 for inlet temperatures of 40 and 60°C and average 

12 



pressures, p, of 0.47 and 0.63 GPa. The sliding velocity is AU and inlet temperature rise 

is3°C. 

For the traction calculations which are the curves in Figure 10, we assumed the 

Hertzian pressure distribution and integrated the Carreau-Yasuda equation (4) across the 

contact area to obtain the average shear stress, T . The dimensionless parameter, a, was 

specified by a = 63/(T+19°C) which yields the values obtained in the previous section 

without approaching the meaningless condition of a = 0 at ordinary temperatures. 

Viscosity was obtained from a Free Volume Model [23] and limiting stress was obtained 

from equation (5). Results were insensitive to the selection of the rate sensitivity, m, 

from 0 to 0.03. Although the predicted curve at 40°C rolls over more quickly than the 

measured traction, the general agreement is good. Considering the great differences 

between the two techniques and the assumptions involved (eg., dry Hertzian pressure 

distribution) it might be unreasonable to expect to do bener. 

13 



4. MECHANICAL SHEAR BANDS IN NON-VISCOMETRIC FLOW 

It has long been suspected that the rate independent behavior observed and discussed 

above was related to slip; either at the boundaries, or internal in the material. Visualization of 

shear bands has to date been accomplished between parallel plates [4]. The interpretation of the 

flow field and stress state leading up to localization is the least ambiguous for plane Couette 

shear. This is not however the general case for lubrication flows. To investigate the generation 

of shear bands in wedge flow we fabricated a new stationary shaft for the High-Pressure Flow 

Visualization Cell [4]. The stationary surface (the lower surface of Figure 11) was ground at an 

angle of 5° with the direction of motion of the moving (upper of Figure 11) surface. Observation 

of birefringence during shear through crossed polarizers clearly showed a shear stress gradient 

across the film as expected. Shear bands appeared as shown in Figure 11 for 5P4E. These bands 

are similar to those observed between parallel plates. However, the Mohr-Coulomb analysis can 

not easily be applied because of the non-uniform stress field in the film. In solid mechanics 

isothermal shear bands are often associated with a change in type of the governing partial 

differential equations. Singularities in the governing equations accompany this change of type. 

As shown below, singularities do occur in the Navier-Stokes equation with realistic lubricant 

properties. 

5. A FUNDAMENTAL LIMITATION OF THE REYNOLDS EQUATION 

FOR PIEZOVISCOUS LIQUIDS 

We have just seen that shear bands will develop during non-Viscometric shear of a 

lubricant at high pressure and high-shear stress. These visible bands effectively represent slip 

planes and are not predicted by current numerical analyses of lubricant behavior. 

The analysis of the pressure generated by lubricant films is almost exclusively performed 

with a form of the classical Reynolds equation. This differential equation derives from the 

14 



inertialess form of the Navier-Stokes equation combined with the continuity equation with the 

assumption that the flow channel is small in one coordinate direction. It has been generalized to 

incorporate variable viscosity as well as variable density and has been remarkably accurate in 

predicting the film thickness in non-conformal contact problems. However, there is a 

fundamental limitation to the Reynolds equation for problems in which viscosity varies with 

pressure and in particular the regime of elastohydrodynamics. The cross-film pressure gradient 

cannot be neglected, and secondary flows result even for flow between parallel plates. 

Renardy recognized [8] that the Navier-Stokes equations for an incompressible, 

piezoviscous fluid may suffer from non-existence and nonuniqueness problems when the 

principal tensorial strain rates are not less than (2^a)''. Here, u is viscosity and a=d In ^/dp is 

the local pressure viscosity coefficient where p is the pressure. The Navier-Stokes equations can 

undergo a change of type - a process which has been used to characterize shear localization [9]. 

Recently, Bair and Khonsari [24] reported the occurrence of singular pressure gradients in 

two-dimensional, inhomogeneous flows of incompressible piezoviscous liquids. In the case of 

flow between parallel plates, these singularities were shown to take place when the shear stress 

T approaches 1,'a. This criterion is equivalent to that found by Renardy. Note that the one- 

dimensional Reynolds equation does not yield this singularity. In fact it predicts a trivial solution 

for the pressure if pressure boundary conditions are fixed at a constant value. We will show that 

the pressure dependence of viscosity leads to very large cross film pressure gradients and 

secondary flows. 

5.1 PIEZOVISCOUS REYNOLDS EQUATION 

Consider the derivation of a generalized Reynolds equation by Dowson [25]. The 

coordinate system is defined so that z is in the direction of the film thickness h. The x and y 

dimensions of the bearing are of the order of L which is several orders of magnitude greater than 

h. Following Dowson, the first stage of the order of magnitude analysis of the Navier-Stokes 

equations for a Newtonian liquid yields: 

dp     8 ,  du. 
-£ = -r-(HT-) (8) 
ex.    dz    oz 

and a similar equation for dpldy. 
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For the cross-film direction, the appropriate equation is: 

dp 8 .   du. ,0s -21 = ... + -— (u—-) (9) 
dz dx    dz 

where we will assume that the terms represented by ... are of lesser magnitude than the term 

retained. In arriving at these equations it is apparently assumed that in general a function such as 

dyld\ is of the order of <p/£. Then if z is of the order of h0, comparing only the right hand sides of 

(8) and (9) gives the result that (dp/dz)/(dp/dx) is of the order of h0/L. This result is usually used 

to justify the omission of dp/dz., but clearly the left-hand side gives the opposite result. 

To illustrate the significance of the cross flow pressure gradient, we carry out the 

differentiation of the products in the right-hand sides of (8) and (9) as shown below: 

dp dp du      d2u ,ß * 
— = CCU ——+u—r (oa) 
dx dz cz      dz 

dp dp du       d2u (Q, 

dz dx dz      dxdz 

Begin with an inspection of (9a). We neglect the term involving cross derivatives since du/dx is 

expected to be small; however, our argument is not compromised if this term is included. 

Applying a similar order-of-magnitude rule as before shows that the ratio (dp / dz) / (dp /dx) is of 

the order of cxnU/h0. A conservative value of a is 10'8Pa'. Taking the velocity in the x- 

direction, U. to be 1 m/s and h0 to be 10'7 m, we find that with a viscosity evaluated at low 

pressures, say u=l 0': Pa.s, the order of magnitude of (dp / dz) / (dp / dx) is 10"3. This is typical of 

hydrodynamic lubrication or EHL inlet zones and this order of magnitude analysis can be used to 

neglect the pressure gradient in the cross film direction. For pressures relevant to Hertzian zone, 

[i=104 Pa.s is not unusual and the order of magnitude of (dp / dz) / (dp / dx) becomes 10\ 

Clearly, therefore, at high pressures dp / dz is not insignificant compared to dp / dx. 

In deriving the classical Reynolds equation based on the reduced form of the Navier- 

Stokes equation, it is typical to define a dimensionless viscosity as n = n/n0, where ^i is 

assumed to be of the order of one. If y0 is taken to be ambient viscosity, then \i can be very 

large at high pressures. Even when the cross film gradient is significant, it must have an affect on 

the pressure profile calculation for us to question the use of Reynolds equation for 
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elastohydrodynamic applications. Notice that in equation (8a) the term dp I dz appears explicitly 

and that it is coupled to dp/dx. This coupling can result in a singularity in the pressure gradient 

which the Reynolds equation is incapable of predicting. 

5.2. LUBRICANT PROPERTIES 

Before developing some properties of the isothermal piezoviscous Navier-Stokes 

equations for the Hertzian zone, it is instructive to examine the viscosity and compressibility of 

liquid lubricants at very high pressure. Free volume models are useful for lubrication analyses 

because they provide a link between volume and viscosity. In the following example, we make 

use of the isothermal free volume model of Cook, et al. [27]. 

The Dolittle equation relates viscosity to volume, V, and occupied volume, VK, 

BV BV 
lnu = -^ ^-^- + lnu0 (10) K    v-v      V-V 

OCC 0 occ 

The Tait equation provides an expression of the volume variation with pressure: 

(ID — = 1 In 
V„ K'+l 

l + p(1^ 
K c 

At zero pressure the volume is Vo, the bulk modulus is K0 and the pressure rate of change of the 

bulk modulus is K^. The secant compressibility is then 

«, =_±f*V= I  (12) 
5     v0dP   K0+(I + K;)P 

It can be shown empirically that V^ is nearly independent of pressure. Differentiating (10) 

yields: 

V ß_2« 

a = - ^-rr^s 03) 

Parameters typical of a mineral oil at a temperature of 75°C, are B=3, K=1.5 GPa K'=10 and 

VK/V=0.70. 

A plot of <J>S and a as a function of pressure is shown in Figure 12. First note the 

remarkable reduction of compressibility for increasing pressures. Although the existence of high 
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pressure is often a justification for a compressible solution, if we restrict our attention to 

pressures greater than 1 GPa, an incompressible analysis is acceptable. Note also that following a 

slight decrease at low pressures, a increases with pressure for pressures greater than about 0.5 

GPa. This is a result of the competition between the rapidly decreasing compressibility at low 

pressures which decreases the sensitivity of viscosity to pressure and the reduction of free 

volume at high pressures which increases the sensitivity of viscosity to pressure. (Liquids for 

which K0 is particularly high will not show the initial decrease of a with p.) The pressure- 

viscosity coefficient can be very large at high pressures. This is in contradiction with empirical 

rules often used in EHD numerical simulations for which a is allowed to monotomically 

decrease with pressure. 

The analyses which follow pertain to applications where the pressure is high enough so 

that compressibility of the liquid can be neglected and that the shear stress is comparable to the 

reciprocal of a. To make the piezoviscous Navier-Stokes equations tractable, we will treat a as a 

constant, recognizing that this assumption is an idealization. 
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5.3 Navier-Stokes Equations for Two-Dimensional, Intertialess Flow of an Incompressible, 

Piezoviscous Liquid 

Consider the creeping flow of a liquid for which the flow channel is very large in one direction, 

y. The component of the velocity in the y-direction, v, and all derivatives with respect to y must 

be zero to provide symmetry. The appropriate Navier-Stokes equations are: 

d dp 

ax 
_ d 

= dx 

dp_ 

dz 

c 

~dl 

2Mär 
(     2   Yöu    dw} 

q — |i   — + — 
v     3   J\dx    dz J 

+ ■ 

o   du   (     2   ^ 'du    dw' 

Kdx    dz. 

dz 

d_ 
dx 

fdw    du} 
[dx    dz 

(dw    du — + — 
dx    dz 

(H) 

(15) 

where q is the bulk viscosity which is not zero for liquids. 

The continuity equation for an incompressible liquid reads: 

du    dw 
■ + — = 0. 

dx    dz 
(16) 

Using equation (9), the Navier-Stokes equations (7) and (8) reduce to the following form: 

(17) 

where subscripts on velocities represent partial differentiation. 

Note that 

du dp      , du dp 
—— = au -*- and —*- = au — 
dx dx dz dz 

Substitution and differentiation gives 

= 2uaux-^ + ua(uz+wx)|£+uV2u 
dx dx 

dp _ 0 _ % t dp 
dz" 

Components of the strain-rate tensor are: 

dz 

= 2ua w, -2- + ua(u, + wx"M- + uV2w 
dz dz       v 'dx 

>A du;    dUj 

vdx;    dXj 

with principal values of 0, d„ and -d„ where for this problem 

(18) 

(19) 

(20) 

(21) 

(22) 
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d: =d2 -d  d (23) 

Equations (20) and (21) can be combined to give the following result which uses the above 

notation. 

aP_n[2nadX2V
2w + (l-2Had22)V2u] 

5x l-(2jiad,r 

ad   W2wl 
(25) 

ap_^2Madx2V
2u + (l-2Madxx)V2w] 

8z l-(2nad,)2 

Clearly for a = 0, — = uV2u and — = ^V2w as required. Note that there may be singular 
dx dz 

pressure gradients for 

An equivalent expression for (26) is: 

d,=-^- (26) 
2ua 

T,=-, (27) 
a 

where t, is the maximum principal shear stress. 

5.4   Example 

Consider the two-dimensional flow of an incompressible piezoviscous liquid between 

two parallel plates with in-plane realtive motion. The cross-film direction is the z-direction with 

thickness h0 and plate motion is in the x-direction. For the isoviscous case the velocity profile is 

parabolic and the x component of velocity is a function of z only. For no wall slip and z=0 at one 

plate and for an isoviscous liquid, the components of the velocity should be of the forms given 

below: 

u(z) = az + bz2 

w = 0. (28) 

It has been customary to assume the velocity field given by (28) for piezoviscous fluids. We will 

show later that in the case of flow between parallel plates a secondary flow must exist when the 

viscosity is a function of pressure. For illustrative purposes, however, we will assume that w = 0 

is a good approximation. 
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Equation (24) and (25) can be written in terms of velocities as: 

dp    u = -^-[(l-2auw2)v2u + au(wx + u2)v2w] (24) 
dx 

dp 
dz    D 
f = £[(l-2apux)v

2w + au(wx + u2)v
2u] (25) 

with 

D = l + (na)2[4uxw2-(wx+uz)
2] (29) 

Substituting w = 0, we obtain 

öx    l-(auu2) 2 
(30) 

^ = Jairvu^ = a^u^ (31) 

dz    l-(auu2)~ z dx 

Introduce the dimensionless quantities 

P = (P-PR)ö: x = (x-x>Ru2Za; ^ = -^- = ep; T = u2 auR, (32) 

where subscript R denotes a reference value at x = 0. 

We will solve equation (30) along a constant z plane. Using the dimensionless quantities defined 

in (32). equation (30) reads: 

^ = -4^ (30a) 
5x    1-T2e2p 

which is separable. Integrating (30a) and making use of the boundary condition p(x = 0) = 0, 

leads to 

x = l + T2-e"p-TV (33) 

which can be solved for p as 

-S±VS2-4T2 

e p —. 

2T 

where S = x -1 + T2. 

(34) 

Figure 13 depicts the variation of p as a function of x for T = 0 and T = 0.5. Notice that 

for x > (1 - T)2, there is no real solution for the pressure. Notice also that there are two branches 
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of p(x), although the upper branch may be discarded as it does not satisfy the boundary 

condition. 

Turning our attention now to the Reynolds equation for the piezoviscous flow of a liquid 

between parallel plates we can write 

_d_ 

dx 
'±*l-0 (35) 
udxJ 

Integration of (35) results in the following. 

^ = Cu = uUzz (36) 
dx 

where the constant of integration, C, is uE. Therefore in dimensionless form, equation (36) 

reads: 

^Le> (36a) 
dx 

The above solution is the same as that predicted by equation (30a) with T=0, which is shown in 

Figure 13. Comparison of the right-hand-side of (30) with that of (36) reveals that the Reynolds 

equation adequately captures the mechanics of a piezoviscous liquid only when a(au2 «1 (in 

other words a x « 1) assuming w=0. 

5.5. SECONDARY FLOWS 

In the previous example, it was tacitly assumed that for flow between parallel plates, the 

component of the velocity normal to the boundary, w, is zero. This is true for isoviscous flows 

and can be easily verified. For Piezoviscous flows, this assumption allows great simplification of 

the Navier-Stokes equations and is analogous to the result obtained by Denn [26] for cylindrical 

Poiseuille flow. However, we will show that neglecting the cross-film velocity component in a 

flow of a piezoviscous fluid between parallel plates results in inconsistent cross-derivatives of 

pressure. To illustrate, we will begin by examining the cylindrical Poiseuille flow. 
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5.5.1    CYLINDRICAL POISEUILLE FLOW 

Denn [25] used a perturbation solution to establish that the radial velocity, v, was zero in 

cylindrical flow. In preparation for the following section, we will obtain Denn's result by 

different means. 

For isoviscous liquids, the velocity is of the form 

R2       r2 

u = q q— M 2     M2 
(37) 

and v = 0 

where R is the radius of the cylindrical duct and q = 4Q / n R4, where Q is the flow rate. 

The appropriate Navier-Stokes equations for an incompressible piezoviscous liquid are: 

dp du dp    \x du      d2u 

<?£, or ör     r dr       dr2 

dp dp du 
— = ctu—— 
dr dx or 

where r and I represent the radial and axial directions, respectively. 

Making use of (37). equations (38) and (39) become 

<?P öp 
— = -auqr—-2^q 
OL, dr 

dp dp 
— = -auqr— 
CT 0% 

(38) 

(39) 

Combining. 

dp        -2nq 
dl    l-(afaqr) 

2„2 dp      2ar|rq 

(40) 

(41) 

(42) 

(43) 
dr     l-(anqr) 

Taking the partial derivatives of (42) and (43), we obtain the following equations 

d   dp\   „   op dp       /öpYfdp^ 
d\ dr dx &J dr. .%) 

(37) 

Take the partial derivative of (36) with respect to ^to obtain: 
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im^a^.^m^l (45) 
The equi\'alence of the expressions (44) and (45) for the cross derivative of pressure 

ensures that the solution for p is independent of the integration path taken and verifies the 

assumed velocity field given by equation (37). Therefore there is no secondary flow, v = 0. 

Note also that in capillary flow, a pressure singularity occurs where cxuqr = l and that this 

singularity will be downstream of the location of the unbounded pressure associated with 

piezoviscous choking of flow. 

5.5.2   Flow Between Parallel Plates 
We will take the same approach to investigate secondary flow between parallel 

plates. Here the kinematics can be made more general as the plates may move relative to 

one another in the x-direction. We will assume a more general form for the velocity field 

than the customary parabolic form of equation (28). Here we assume 

u = u(z) and w m 0 (46) 

Remember v = 0, since this is a two-dimensional problem. Recall that the 

pressure gradients are given by (24) and (25) in general and by (30) and (31) when 

w = 0. 

a dp _      nu3 

dx    l-(a(iuz)" 
(30) 

^=
a^U'Va^| (31) 

6z    l-(auuz)
2 2dx 

Differentiating (30) with respect to z yields after much manipulation, 

5zl,dx dz 5x    u„ dx. u zz \dzj 
(47) 

Similarly, differentiating (24) with respect to x yields 
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dz dx dx ydz; 

U, 

V   U2 

> 

u Z2    ) 

dp    2a (dp f     dp       ^ 

v dx / 

And with ux = 0, Equation (48) becomes 

ö_ 
dx 

f 7^\ dp 
{dz 

dp dp    2oc2u2 (dp} dp 
= 2a—— + 

dzdx      u KdzJ dx 

(48) 

(49) 

Equating the RHS of (49) and (47) reveals properties of the admissible form of u(z) 

when w = 0. 

dp 
'Bdz 

** tft \A-1* ^~f      _ \A      ^*       2        Z2     ^ 

2 ^P 

' "n'u«£ (50) 

It is clear that the customary parabolic form of the velocity is inappropriate for a * 0, 

since for a polynomial representation of u(z), a third degree term is needed for d3u/<3z3 to be 

nonzero. 

Additional information can be extracted by considering that du^/dx = 0, since w = 0. 

Now. 

-a*u2ua «M 
dx)     Höx2 = 0 (51) 
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So that 

a '*Y_-8"P (52) 
vdxy öx2 

Differentiating eqn. (30) with respect to x gives 

dx 

f*n\      ^\2 

&1   .*    .o»;* 
u* 

+ 2aV— T1 (53) Vox 

Substituting (53) into (52) yields 

'•a ~~     "* r-: uB = -a>'ir (54) ax 

which must be satisfied for w = 0. Note that the sign of uH must be opposite that of dp/dx. 

This is contrary to what is found in practice. Substituting the expression for dp/dx (eqn. (30)) 

into (54) to obtain 

l-aVu2
2 = -aVuj (55) 

which is. of course, a contradiction. Therefore, w#0, and a secondary flow must occur for 

a * 0 when a Poiseuille component exists. 

6.        SUMMARY AND CONCLUSIONS 

If care is taken to avoid or correct for viscous heating, the results from high-pressure 

Couette rheometers may be used to generate empirical rate equations which are useful in 

modeling elastohydrodynamic traction. This approach, however, fails to ellucidate the details of 

lubricant flow in the concentrated contact. The outstanding problems of surface roughness 

effects and EHD related boundary lubrication await analytical techniques which can handle the 

change in character of the governing (Navier-Stokes) equations. 

An analytical treatment of piezoviscous liquids is presented which reveals that the 

Reynolds equation adequately captures the mechanics of a piezoviscous fluid only when ta « 

1. In the elastohydrodynamic lubrication regime, this condition is satisfied in the inlet zone 

where typically Ta = 0.02. Consequently, Reynolds-based EHD inlet analyses yield realistic 

predictions for film thickness. In the Hertzian contact region, the contribution of the pressure 

gradient across the film may play a very important role and the use of the Reynolds equation is 
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questionable. While the mathematical treatment of the subject becomes considerably more 

complex, these issues must be dealt with if closure is expected in predicting EHD traction and 

relating it to independently determined lubricant properties. 

27 



REFERENCES 

1. J.F. Dill, P.W. Drake and T.A. Litovitz, "The Study of Viscoelastic Properties of 
Lubricants Using High-Pressure Optical Techniques," ASLE Trans., 18, 3, (1975) 
202-210. 

2. A.J. Barlow, G. Harrison, J.B. Irving, M.G. Kim, J. Lamb and W.C. Pursley, "The 
Effect of Pressure on the Viscoelastic Properties of Liquids," Proc. Roy. Soc. 
London A. 327, (1972) 403-412. 

3. S. Bair and W.O. Winer, "The High-Pressure, High-Shear Stress Rheology of Liquid 
Lubricants," Trans. ASME, J. of Tribology, 114,1, (1992) 1-13. 

4. S. Bair, F. Qureshi and W.O. Winer, "Observations of Shear Localization in Liquid 
Lubricants Under Pressure," Trans. ASME, J. of Tribology, 115, 3, (1993) 507-514. 

5. A. Eastwood and G. Harrison, "Non-Newtonian Viscosity at High Stresses," Proc. 
VIII Intern. Congress Rheology, (1980) 199. 

6. S. Clyens, C.R. Evans and K.L. Johnson, "Measurement of the Viscosity of 
Supercooled Liquids at High Shear Rates with a Hopkinson Bar," Proc. R. Soc. Lond. 
A381. (1982) 195-214. 

7. J. Jakobsen and W.O. Winer, "High Shear Stress Behavior of Some Representative 
Lubricants," Trans. ASME, JOLT 97, 3, (1975) 479-484. 

8. Renardy, M. (1986) "Some Remarks on the Navier-Stokes Equations with a 
Pressure-Dependent Viscosity," Communications in partial Differential Equations, V. 
11, No. 7, pp. 779-793. 

9. Lee, Y.K., Ghosh, J., Bair, S., and Winer, W.O. (1994) "Shear Band Analysis for 
Lubricants Based on a Viscoelastic Plasticity Model" Applied Mechanics Review, 
V.47, No. 6, AS209. 

10. A. Dyson, Interdisciplinary Approach to Liquid Lubricant Technology, Ed. by P. M. Ku, 
NASA, (1972) 303. 

11. S. Bair and W. O. Winer, "A Rheological Basis for Concentrated Contact Friction," 
Proc. Leeds-Lyon Symp. (1993). 

12. S. Bair and W.O. Winer, "The High Shear Stress Rheology of Liquid Lubricants at 
Pressures of 2 to 200 MPa," ASME J. of Tribology, 112,2, (1990) 246-252. 

13. H.H. Winter, "The Unsteady Temperature Field in Plane Couette Flow," Int. J. Heat 
Mass Transfer, 14, (1971) 1203-1212. 



14. S. Bair and W.O. Winer, "A New High-Pressure, High-Shear Stress Viscometer and 
Results for Lubricants," Trib. Trans. 36, 3 (1993). 

15. E.O. Doebelin, Measurement Systems: Application and Design, McGraw-Hill, New 
York (1966). 

16. S. Bair, "The High-Pressure Rheology of a Soap-Thickened Grease," STLE Trib. Trans. 
93-TC-4D-1 (1993). 

17. P. Bezot, C. Hesse-Bezot, G. Dalmaz, P. Taravel, P. Vergne and D. Berthe, "A Study of 
Traction in EHL: Experimental and Simulated Curves for a Silicone Fluid," 
Wearl23, (1988) 13-31. 

18. C.R. Evans and K.L. Johnson, "The Rheological Properties of EHD Lubricants," Proc. 
Instn. Mech. Engrs. 200, No. C5 (1986). 

19. S. Bair and W.O. Winer, "Some Observations in High-Pressure Rheology of 
Lubricants," ASME Journal of Lubrication Technology, 104, 3, (1982) 382-386. 

20. M. Muraki, "Molecular Structure of Synthetic Hydrocarbon Oils and Their 
Rheological Properties Governing Traction Characteristics," Trib. International 20, 6, 

(1987)352. 

21. P.L. Wong. S. Lingard and A. Cameron, "The High Pressure Impact Microviscometer." 
STLE Trib. Trans. 35, 3, (1992) 500-508. 

22. C.R. Evans, "Measurement and Mapping of the Rheological Properties of EHD 
Lubricants," Ph.D. Thesis, Cambridge (1983). 

23. Bair, S. and Winer, W.O. "Application of the Yasutomi Free Volume Model to 
Various Liquid Lubricants." Proc. International Symp. Tribology. Yokohama (1995V 

24. Bair, S. and Khonsari, M. (1996) "On an Apparent Singularity in the Flow of 
Liquids Under High Shear Stress," ASME Symposium on Rheology and Fluid 
Mechanics of Non-linear Materials, paper number G01021, Atlanta, Georgia. 

25. Dowson, D. (1962) "A Generalized Reynolds Equation for Fluid-Film Lubrication," 
International Journal of Mechanical Engineering Sciences, V. 4, pp. 159-170. 

26. Denn, M. (1981) "Pressure Drop-Flow Rate Equation for Adiabatic Capillary Flow 
with a Pressure and Temperature-Dependent Viscosity," Polymer  Engineering Science, 
V. 21, No. 2, pp. 65-68. 

27. Cook, R.L., Herbdst, C.A. and King, H.E. (1993) "High-Pressure Viscosity of Glass- 
Forming Liquids Measured by the Centrifugal Force, Diamond Anvil Cell Viscometer," 
Journal of Physical Chemistry, V. 97, No. 10, p. 2359. 



List of Figures 

Figure 1.        Radial Temperature Distribution in Concentric Cylinders after Velocity 
Ramp Lasting for Time, t Result for t = t 

Figure 2. Flow Chart for Santotrac 50, p = 297 MPa 

Figure 3. Flow Chart for Mineral Oil, LVI260, p = 241 MPa 

Figure 4 High-Pressure High Shear Stress Viscometer for 600 MPa'Pressure 

Figure 5 Torque Transducer Operating Principle for Rheometer Shown in Figure 4 

Figure 6 Flow Chart for a Polyalphaolefin 

Figure 7 Flow Chart for HVI650 

Figure 7b Flow Chart for HVI 650 

Figure 8 Flow Chart for Santotrac 40 

Figure 9 Flow Chart for Grease and Base Oil 

Figure 10 Measured and Predicted Traction Curves for HVI 650 

Figure 11        Mechanical Shear Bands Between Converging Plates with Sliding. Lower 
Tilted Surface is Stationary. 

Figure 12        The Variation of Compressibility and Pressure-Viscosity Coefficient with 
Pressure 

Figure 13.       Pressure along a Constant z Plane Assuming w = 0 



Outer Cylinder 

Figure 1       Radial Temperature Distribution in Concentric Cylinders after Velocity 
Ramp Lasting for Time, U. Result for t - to. 



-V 

-K) 

I 

O 
Q 

£ 

<N 
II 
a » e *n 
u 
s 
o 
e « 

CO 
u 

«s 

e 
E 

-<NJ 

«0 

Qd/X 901 
« 



\ 

-«■ 

\ 

\ 
Ü 
Iß 
w 

Y 

«s 

fS 

\ 

CO 
Q. 

CM 

O 
(0 
CM 

> 

» 

\ 

-FO 

Q 

-(\j 

2 
4» e 
£ 

t 
es 
x 
U 
e 
E 

en 

t 
S 

T 
(0 

«W/l DOT 



DRIVE SHAFT 

SPRING 
WASHERS 

THERMOCOUPLE 

MIRROR 

TORSION  BAR 

TO PRESSURE 
SOURCE 

THRUST BEARING 

-*\ 1cm h- 

HIGH-PRESSURE 
SEAL 

CUP & BOB 

SAPPHIRE 
WINDOW 

SAMPLE RESERVOIR GLASS TUBE 

Figure   4      High-Pressure High Shear Stress Viscometer for 600 MPa Pressure. 



COUPLING 

TORSION BAR 

HIGH-PRESSURE 
WMDOW 

LASER 

Figure  &       Torque Transducer Operating Principle for Rheometer Shown in 
Figure 4 



\ 

\ 

\ 

\ 

\. 

\    \ 
V    \ •                « « 

\  X " U5 

-to 

O 
Q 

e 
is 
"3 es 
f a. 
"3 
"3 
ft. 
« 

•2 
t 

e 
E 

o o 
r- 
li. 
X 
CO 

-(SI 

s 
M 

T -r 
(0 « 

Od/I 001 



-«• 

-ro 

i 

3 

o 
to 

> x 

V) 

B 
k 

« x 
U 

I 
E 

s 

-OJ 

T- T 
<0 tf) 

Pd/1 001 



-V 

ü 
CO 
eg 

o 
U) 

> 
X 

-IO 

O 
3 

in 

E 

r 
U 
I 
E 

s 

- CM 

-r- i 

Pd/1 DOT 



-«• 

ü 

00 

o 
c 

CO 

t 

in 
rvi 
II 

t-8 

/ 
\ 

\ 

•v 
\ 

CO 

2 

\ \4 
\ 

-fO 

I 

Q 

A 
\ 

e 
u 
2 

e 
0) 

C/3 
I. 
£ 
r 
es 

u 
e 
E 

oo 

s 

\ -CM 

\ 
\ 

 1  
00 CD 



-«■ 

»fO 

I 

O 
Q 

(0 
0. 

s \ 
\ 

\ 
»N 

P 
CM 

e 
ä Si 
£*§ O1 ©to 

o £ .ts O  w u 
O     Q_    O 

O §> 

* 

M « 
BQ 

e 
H 
w n 

I u 
b .e 

I 
E 

OS 

a wo 

\ 

\ 

\ 
\ 

T "T" 
(0 m 

Pd/1 DO! 



CO 
■■». 
r-■» 
C 

O1 

o 

s 
H 
•o u 

t 

s 
K 
OS 
41 

s 

d/ 2 'luepujeoo uotpejj. 



5P4E. 138 MPa, 5°C 
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